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ABSTRACT 

A single type of energy harvesting device may be too expensive to deploy, but if it can operate symbiotically 

(Slocum, 2014) with another, the combined cost of energy might be acceptable.  As an example, consider 

offshore wind turbines, which hope to use their greater capacity factors to compete with land-based turbines; 

however the structures can become prohibitively expensive if they must be placed further offshore to avoid 

opposition from shoreline residents.  To reduce overall costs of energy, this paper will explore adding wave 

energy and uranium-from-seawater harvesting devices to offshore wind turbine structures. 

 

WAVE ENERGY 

With stronger winds, larger turbine sizes, and plenty of space versus on-land, 

offshore floating wind turbines (FWT's) have the potential to satisfy significant 

energy demand with renewable power (Kluger, 2015). However, a 5 MW floating 

wind turbine capital cost runs as high as $20.7 million, leading to an energy cost 

of $0.20/kWh, four times that of natural gas (Myhr, 2014). This cost is largely 

driven by the structure's need to withstand large wave forces that act on the 

floating platform. On the positive side, wave power is a predictable, constant, and 

energy-dense renewable resource. The energy resource in waves may be as high 

as 50-60 kW/m average annually. Despite these promising qualities, electricity 

from ocean wave energy converters (WEC's) is currently much more costly than 

other sources, ranging from $0.28-$1.00/kWh. 27% of a typical WEC’s cost due 

to permitting, electric transmission lines, and mooring lines. 37% of a typical 

WEC's steel is for a supporting frame (Yu, 2015). 

 

Symbiotically, a WEC could act as a tuned mass damper or ocean wave absorber 

to reduce wave-excited platform motion, allowing the platform and tower to be 

built with less steel at lower cost. In addition, a WEC attached to a floating wind 

turbine could share permitting, transmission, and mooring line costs with the 

wind turbine, and eliminates much of the WEC steel frame. Predictable and 

robust wave power may then supplement the wind power harvested 

 

Several WEC configurations and parameters are considered to reduce the total 

FWT-WEC cost of energy: an internal tuned mass damper or external wave 

energy converter; with hydraulic, Wells turbine, or non-electricity-producing 

power take-off mechanisms, as illustrated in Figure 1.  The wave energy 

converters can have the power dissipative elements at their junction points with 

the floating wind turbine. The external array (c) can have a Wells turbine in the 

WEC body, exposed to incident waves. 

 

To optimize the combined system, we model the coupled equations of motion for a floating wind turbine 

Figure 1: OC3-Hywind 5 MW 

floating wind turbine with various 

attached wave energy converters 

(WEC's): (a) Surge-mode tuned 

mass damper in the nacelle, (b) 

Heave-mode turned mass damper in 

the floating platform, and (c) Array 

of external heave-mode wave 

energy converters attached to the 

platform.  
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platform, flexible wind turbine tower, and attached WEC in the frequency domain. Using response amplitude 

operators, we estimate the platform motion, tower stress, and WEC power over 20 years in a typical wind-wave 

environment. We estimate the wave energy converter’s cost based on its power capacity, complexity factor, and 

steel mass. 

 

URANIUM HARVESTING 

Uranium is present in the world’s oceans as dissolved ions at a uniform concentration of approximately 3.2 ppm 

(Oguma, 2011), which, over the total volume of the oceans, amounts to approximately 4.5 billion metric tons, 

about 1000 times more than exists in conventional terrestrial uranium reserves (Tamada, 2006). Current methods 

of adsorbing uranium from seawater use chelating polymers, as they have been found to be the most promising 

in terms of cost, adsorption capacity, and environmental footprint (Kim, 2013, Zhang, 2003, Seko, 2003, 

Anirudhan, 2011).  Chelating polymers are submerged in seawater until the amount of captured uranium 

approaches the fiber’s adsorption capacity. Uranium and other elements that have bonded to the polymer are then 

stripped off in an elution bath. This bath process may be repeated multiple times before the polymer is 

regenerated by an alkali wash which frees the adsorbent’s functional groups, allowing it to be reused. Finally, the 

output from the elution process undergoes purification and precipitation to produce yellowcake in similar 

processes as mined uranium.  Initial deployment schemes utilized arrays of adsorbent fibers braided into buoyant 

braids and laid out along the ocean floor (Tamada, 2006, Schneider, 2014). However, the periodic retrieval and 

redeployment of the fibers required the use of ships, resulting in an extremely costly system.  By deploying the 

adsorbent braids off of an offshore wind turbine, it was estimated that costs could be significantly reduced 

(Picard, 2015, Haji, 2016, Byers, 2016). 

However, in general, uranium-adsorbing materials have inherently low tensile strength and durability, posing 

significant problems for deployment of adsorbent braids in a harsh ocean environment. To overcome this, we 

developed a two-part system utilizing a hard, permeable outer structural shell that houses an inner adsorbent, 

thereby allowing for the decoupling of the mechanical and chemical requirements of an offshore uranium 

harvesting system (Haji, 2015). Figure 2 depicts one shell 

design.  This system allows for the chemistry of the inner 

material to be optimized for higher adsorbent capacities, 

while the mechanical properties required of the device are 

achieved by the hard, permeable outer structural shell. The 

resulting overall system is more cost-effective for 

implementation. In this paper, we present the material 

properties of the outer shell, the adsorbent fiber, and a 

mooring rope that may be used to connect the two into a ball-

chain system or net that is then incorporated into a machine 

that works offshore to harvest uranium from seawater.  
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